Kpamxue coobuenus OHSIH No 4[67 ]-94 JINR Rapid Communications No.4[67 ]-94
YAK 539.172.17 '

ON ELASTIC AND INELASTIC HEAVY ION SCATTERING
IN THE HIGH-ENERGY APPROXIMATION

V.K.Lukyanov, A.V.Embulaev*, V.P.Permyakov

Using the high-energy approximation method for the three-dimensional
quasi-classics, elastic and inelastic cross sections of heavy ions at large angles
are calculated. The role of the deflection angle introduced in the theory and of
the parameters of an interaction is discussed. The corresponding amplitudes are
obtained in analytic forms and a good agreement with experimental data is also
obtained.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

Yrnpyroe u Heynpyroe paccesHue TSXeaHX MOHOB
B BHICOKOJHEPIeTHYECKOM NPUOIMXKEHHI

B.K.JIyKbﬂﬁos, A.B.Em6ynaes, B.I1.Ilepmsakos

Hundxbepenunanbible ceuenns ynpyroro u HEYNPYIOro paccesitHusl TsKe-
JIBIX MOHOB Ha A(PAX PACCUMTAHBI HA OCHOBE BBLICOKOIHEPIETUUECKOTO PHGIM-
HEHHUS! 119 KBA3HKJIACCUYECKOTO PACCESHUS B T10JI€ KOMILIEKCHOTO MOTEHIMA -
Ja. IIpoananManposana posb OTKIOHEHHS TPACKTOPHH OT MPSAMOL JIMHUM. AM-
TLTATY BT pACCESIHUS [IOTYEHDI B AHAJIMTUYECKOM BUAE. HOCTHMHYTO X0pomwee
€OracHe pesyIbTaToOR PACUETA € IKCTIEPUMEHTATIBHBIMMU HAHHBIMM.

Pabora BoinonneHa B Jla6oparopuu TeopeTueckoit ¢usuxu um.H.H.Boro-
mobosa OUSIHU.

1. Introduction

Elastic and inelastic scattering of alpha-particles, light and heavy ions
on nuclei at energies E >> V is very sensitive to the parameters of an
interaction potential and also to the detailed behavior of the structure char-
acteristic such as the density distributions, transition matrix elements and
so on. Indeed, in this case the corresponding wave length A is much smaller
than typical dimensions of a nucleus, the radius R and thickness a of a
boundary of the nuclear interaction. Moreover, a specific problem appears at
large scattering angles when the cross section is as a rule exponentially
decreasing because the sets of partial wave decompositions become the sign-
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alternative ones and, therefore, one needs to keep in the computer memory
a lot of partial phases. One of the ways to decrease these difficulties is to use
one-dimensional quasi-classics for calculating the partial phases and then to
develop special methods of summing up the corresponding partial sets [1].
However, the initial conditions E >> V, kR >> 1 may be used themselves for
developing the approach where it is not necessary to use the partial wave
expansion for the elastic and inelastic scattering amplitude. In particular,
the method was developed based on three-dimensional quasi-classics that
operates not with the one-dimensional partial waves but directly with the
theree-dimensional action function [2—4]. A deflection of the classical
trajectory of motion on the straight line is included which plays an important
role especially in the case of the heavy-ion scattering. We have used the
realistic complex nuclear and Coulomb potentials and made comparison
with experimental data obtained for the heavy-ion beams at energies about
one hundred MeV per nucleon. Below we apply this method to the processes
of elastic and inelastic scattering

2. Elastic Scattering

Heavy ion elastic scattering at energies larger than several dozen MeV
per nucleon is just the process to which the method mentioned above can be
adjusted. To this aim we use the elastic scattering amplitude obtained in [3]
for large angles 6 > (1/kR) and 6 > 6, = (1V |/E) covering in practice a

wide region of scattering angles

el _ m ~)* +) _
r=-"a dr‘I»‘k(f)V‘Ilki )=

= - T [ dr(V, + V) exp {i Q1 + i D)}, Q.1

2mh?
where [2]
® = o) + o)
i f
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and the potentials

V=V +iW=V,f, (r) + iW, (), (2.3)
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with the charge density distribution p(r) and the effective momentum
transfer q,, = q — q, where qlq,, g = 2k(a — a ), a = sin(6/2), and

a, = % [V(R) + V(R) + iW(R)], taken at the radius R, of the external

limited trajectory of motion. All the distribution functions are taken in the
form of the Fermi-function

1
f(n) = — 2.5)

1+ exp—a—z
[4

Thus, the scattering amplitude consists of three terms:

el _ el . el el
T = TV + lTW + TC . (2.6)

Substituting (2.4) into Tcel we obtain the 6-dimensional integral. It can be
transformed to the 3-dimensional one if one expands the phase @ in
u = r - x and then integrates over du [5)
2
~ Z.Z,ep
T = - M drv (r)exp {i® (D)}, v (r =—i——°f(r,
&=-soz Jdm ) h ) = =510

d(r) = g, T + (1), Q.7

where g, = ¢ o and v (r) plays the role of a quasi-potential of scattering on

a spread nuclear charge. Now each of the terms of the scattering amplitude
(2.6) has the same form:

m . X
TH = - P JdrYp, 1) exp {i ()}, (2.8)

where Y, is the «strength» of the corresponding part of the whole potential.

It has been shown in [2,4] that in calculating the whole quasi-classical
phase ® one may limit oneself to the step nuclear potential and the inside-
of-R part of a Coulomb potential. In this case the phase has a rather simple
form with a typical power dependence on the variables of integration r,
# = cos 6 and cos ¢. It is written as follows:
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d= 2a,+ Bu+ nl/t2+ cly3+

+ ny(1- p%) cos® & + ¢, u(1— p%) cos® g, 2.9)
where ﬁ , ¢ and n are expressed through a,. For example,
B = 2k(a — ar + B;

2
leze

2R c

_ 2
B=- hlv [(Vy+ iWy)+ 3- —é;)]a r. 2.10
c

Now, keeping in mind that dr = —rdrd ud p, one can integrate in (2.8)
over du by parts

+ ,expgi('l;! +1

I=[duexp [i&;(r,#,@]:_’ad)/a# *
-1

-1
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= 2 2.11)
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neglecting the second term, having the smallness (kR)_z. The result is
= — iexp (2, + in)) 1) — 1y,

exp (£ i(B + )]

1% = 3=
Aa) ¥ O(a) 0S¥

(2.12)

Agy=B+3c, =2n; 8, =2n,xcy. 2.13)

( (=)

Then the integration over dp is performed with the help of a table integral.
Thus, we can write the amlitude (2.8) in the form of a one-dimensional
integral [2]:

el _im , )y g |
=3, { fp(r){Fp (r) - F (r)}dr, 2.14)
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where
rexpl=i(gr + ¢,)] expli(2a, + n, 1

o= ’

Fr) =

-1 —
L(z) = gVAL B = 8. @15

Integration in (2.14) can be done [2,4] if one uses the properties of the
Fermi-function, which has poles r{*) = R + ina(2n + 1), (1 = 0,1,2..) on
the complex r-plane. In practice, for the typical nuclear parameters it is
enough to take into account only a couple of poles rgt) = R * ix, nearest to

the real axis («two-pole approximation»), because every next pair
contributes approximately an order smaller than the previous one. Then, we
have

Substituting into (2.16) the corresponding poles one can easily find that the
amplitude, roughly speaking, behaves as an exponential function,
depending on the exponent —2ak sin 8/2 and oscillating with a frequency
as a function of the radius R.

3. Inelastic Scattering

For calculating the inelastic scattering of light and heavy ions with
excitation of the collective nuclear states we have used DWBA with the
relative-motion QC-wave functions whose phases are calculated as it is
shown in Sec.2. The energy change in the out-channel is neglected since
usually E, << E. The transition interaction is constructed as usual with the

help of derivatives in small quadrupole and octupole additions
SR =R a,, Y (P to the radius of a potential in the elastic channel.

The result for the amplitude is the same as if one uses the sudden
approximation

T" =M |T‘"+ zTel+ Te’|1 M), @.1
where
T‘”=—— drY f (r,R + SR)WpH) (3.2)
s Ly )
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is the operator, depending on the internal nuclear coordinates o 1a- Lhen,
substituting (3.2) into (3.1) we get

T,"=3% (UM, IaLMIJlJVIi)T("";LM, (3.3)
LM
where
Tin o __m_ YR [ d qﬁ‘)“w”)d—fp— Y (3.4)
oM = "5 2 et er dR LM’ '

Transforming the structure matrix element in (3.3) through the reduced one
and using the definition of B | (EL)-transition, one can write the inelastic
Cross section:

do 3+ D 1 » BY(EL) =i 2 3.5
Q- W AN L+ A, D? LM
with
D =z c, .r'~‘—fﬂ L+24r = R L2 (3.6)
L = ZepgRI . L= dRCr r=R."" .

One can show that all the terms with M = 0 may be neglected because of the
additional fast oscillations in integrands as compared with the term M = (.
Then, the principal difference of the inelastic amplitude from the elastic one
appears in integral over du, because now in the upper and lower limits
4 = = 1 we have to take into account the relation

Y (= #) = (D)"Y o (+ ), R

which changes the sign of the second term in the inelastic analog of eq.(2.14)
for odd L. Indeed, using the relation df, /dR = — df, /dr, we get:

. : © df
_ _im p + _ILp(—
T = =7 VY 1(DR { dr — {Fp( Xy - (-1)"Ff )(r)}. (3.8)

This integral can be calculated in an analytical form if one uses the second
order poles on the complex plane of the derivative df/ dr. However, we show

another way. Indeed, bearing in mind that the F(*)-functions rapidly
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oscillate with increasing r because of the exponent gr >> 1, one can integrate
. in (3.8) by parts

[ ] df -] dF(t) 1
—2F®gr=—ff—L _ 40 . (3.9
'({ dr ' p ‘({fp dr (a“r)

So, substituting (3.9) into (3.8) we get a form like (2.14) for clastic
scattering with some additions in the integrand, namely, the factor gR and

the multiplier (— I)L before the second term:
Fin _ im T Fry = (=YL p O
T, =3 Y, Y1o(DRT { drf () (Fp (r) - (-)" F (r)). (3.10)

Subsequent calculations are the same as in the case of elastic scattering,
using the two-pole approximation.

4. Conclusion

Calculations of differential cross sections for elastic and inelastic
scattering within the two-pole approximation are presented in Figs.1 and 2
in comparison with the experimental data from [6]. One can see a rather
good agreement in the range of scattering angles 6 > 6 . = 2° in coincidence

with the initial assumptions of the HEA-method. For each set of colliding
nuclei we got the same interaction parameters for elastic and inelastic
channels excluding the absorption W, that occurred to be about 10% as

small as that in the elastic channel. The depths of potential wells are in
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Fig.1. The heavy ion elastic and inelastic cross sections !”0+%Ni; E,,;, = 1435 MeV; exp. data
from [6]; solid lines — theory :

18



&, E=1435 MeV ] E=1435 MeV
\ ] 17,

N E=1435 Mev 0 490z 0 +0z
©

17 80
0 +%zr sk 2%, 2.19 MeV 37, 2.75 MeV

do/d0 {mb/str)
o

1110l

+

da/dQ (mb/str)

-
o
-

10

s gsginl

b

o
3
o
al

»
L

10.00 o. 4. 8. 0.00
Fig.2. The same as in Fig.1, but for 170407,

limits of ¥, = 60—70 MeV and W, = 5—6 MeV, the B(EL)-transitions

obtained are approximately twice those cited in [6]. The most interesting
result is that the thickness parameters for inelastic channels are about two-
three times as small as those for elastic channels, where we have
a,; = 0.55—0.6 fm. This might signify that in collective excitations of nuclei

not all the particle states take part in forming the transition matrix elements.
Otherwise, in elastic scattering the «tail» of a potential is formed from the
whole set of one-particle states. It is easy to see from (3.10) that the
oscillating part of the amplitude as a function of the scattering angle is the
cos- or sin-function depending an L-even or odd, respectively. In this case
the cross section will have visible oscillations which coincide for excitations
of the even collective states in their phases with the elastic scattering
oscillations. We can summarize that investigations of heavy ion collisions in
the quantum region of scattering angles 6> 6., outside the limited

trajectories of motion, are very sensitive to the precise structure of a nuclear-
nuclear interaction. For instance, the slope of curves with 6 feels the
«thickness» of the acting region in the corresponding channel. This may be
used also in searching for the «halo» distributions of nuclei in the radioactive
beams which now become available. We hope that the HEA-method
suggested can be successfully used in both the qualitative and quantitative
analyses of scattering processes and direct reactions.

The authors are grateful to Dr.R.Roussel-Chomaz for providing the
tables on elastic and inelastic scattering data.
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